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Many recent studies have focused on two statistical properties observed in diverse real-world networks: the
small-world property and compartmentalization �D. J. Watts and S. H. Strogatz, Nature 393, 440 �1998�; M.
Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. 99, 7821 �2002��. Models that include group affiliations
have been shown to produce networks with high clustering coefficients, a necessary condition for small-world
properties �M. E. J. Newman, Phys. Rev. E, 68, 026121 �2003�; M. E. J. Newman and J. Park, Phys. Rev. E
68, 036122 �2003��. However, the consequences of varying the number and size of groups in a network are not
well understood. In order to investigate the consequences of group organization, we examined sets of networks
that varied simultaneously in the size and number of groups, while maintaining the same overall size and
average degree. Here we show that the small-world property arises in maximally compartmentalized and
clustered networks that occur in the intermediate region between few, very large groups and many, very small
groups.
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I. INTRODUCTION

Increasingly, network models are being used to represent
and analyze the structure of interactions in real world sys-
tems. For example, network models have been employed to
describe diverse social networks �1–5�, engineering networks
�6,7�, the internet �8�, and various biological systems, includ-
ing metabolic networks �9�, epidemic spread in populations
�10–13�, metapopulations �14�, and ecological interaction
webs �15–21�. Network representations provide a common
framework for the analysis of structural properties in large
complex systems. This structural approach is especially use-
ful in systems where a complete dynamical description is not
possible, but an analysis of structural properties may yield
insights into some aspects of network dynamics �3�.

Intriguingly, diverse real world networks often demon-
strate common structural properties, including the “small
world property” �7� and compartmentalization �16�. The
small world property is defined by �1� short characteristic
path lengths �L� similar to random networks with the same
number of vertices and edges, where L is defined as the mean
of all pairwise shortest paths between each vertex and all
other vertices in the network, and �2� high clustering coeffi-
cients ��� much greater than random networks with the same
number of vertices and edges, where � is defined as the
probability that two vertices within a network that are con-
nected to a randomly chosen third vertex, are themselves
connected. This property provides a mathematical foundation
for the so-called “six degrees of separation” observation that
short interaction chains exist in relatively sparse networks.

The compartmentalization property describes networks
where a group of vertices within a network is highly con-
nected, but connections between different groups are sparse.

Compartments have been described as modules, communi-
ties, subsystems and groups within various network contexts.
For example, compartmentalization has been identified in
ecological foodwebs �16,19,20,22�, where groups may corre-
spond with habitat boundaries �23,24�. In social networks
where individuals have group affiliations, interactions may
be more common within groups than between groups �2,16�.
Such group affiliations are sufficient to produce highly clus-
tered networks �1,5,25�, and this group organization suggests
a simple explanation for observations of highly clustered
real-world networks. However, the consequences of group
size and number on the compartmentalization and small
world properties of networks are not well understood.

In order to investigate how the size and number of groups
in networks influences compartmentalization and the small
world property, we analyzed the structural properties of
simulated networks using a simple model of a compartmen-
talized system. This system is represented by a population of
N vertices separated into C equal-sized groups �Fig. 1�. The
probability of an edge between vertices of the same group is
w, and the probability of any edge between vertices of dif-
ferent groups is b, where w�b. In models where w�b, net-
work representations appear to be composed of C well-
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FIG. 1. �a� A graph representation of a highly compartmental-
ized network of 100 vertices separated into 10 equal-sized groups.
�b� The adjacency matrix of the same network.
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connected subsystems, connected by a random graph of
sparse inter-group edges �Fig. 1�. While this model does not
attempt to replicate many features of diverse real-world net-
works, it provides a readily interpretable basis for investiga-
tions of group size and number.

II. METHODS

We used a computer program �26� to generate sets of
networks that varied simultaneously in the number and size
of groups using a range of parameter values in C, b and w,
while maintaining the same overall size N and average de-
gree k �Fig. 2�. Specifically, undirected networks were gen-
erated at every evenly divisible group size between N and 1
using methods similar to those of Girvan and Newman �16�.
Twenty networks per parameter set were generated with con-
stant overall size �N=1000 vertices� and average degree
�k=20� for numbers of equal-sized groups, C� �1,2 ,4 ,5 ,
8 ,10,20,25,40,50,100,125,200,250,500,1000�. Each
network was generated by iterating over all � 1000

2
� pairs of

vertices, and adding an edge to the network adjacency matrix
with probability w for vertices in the same group, or prob-
ability b for vertices in different groups. With these param-

eters, the extreme values of C=1 and C=1000 produce ran-
dom graphs with edge probability p=0.02. At these
extremes, each individual either constitutes its own group, or
all individuals in the population belong to the same group;
this results in equivalent, uncompartmentalized random net-
works at both extremes of C. Unconnected networks �net-
works in which any vertex is unreachable from any other
vertex� were omitted from the analysis.

The parameters along the group number axis �Fig. 2�a��
are chosen to yield the greatest compartmentalization pos-
sible for a graph with N vertices, C groups, and E�M� ex-
pected edges, given a maximum density of within-group
edges, wmax. The parameters w and b are related as follows:

E�M� =
Nw�N − C� + bN2�C − 1�

2C
. �1�

The parameters are chosen in a two-step process. First, an
upper bound is calculated for w:

w+ =
2E�M�C
N�N − C�

, �2�

and w is defined:

FIG. 2. Structural properties of networks that vary simultaneously in group size and number, while maintaining constant overall size
�N=1000� and average degree �k=20�. �a� Where w�wmax, b was chosen so that approximately half of the graphs were connected. �b�
Where w�wmax, b was fixed at 1.77�10−4. Y-axis labels as follows: Pr�Edge� represents the probabilities of edges, b �between-
compartment; squares� and w �within-compartment; circles� used in network simulations; OR is the odds ratio measure of compartmental-
ization �Eq. �6��; C1 �23� �Eq. �7��; � is the clustering coefficient; L is the characteristic path length �Eq. �5��; � /L is the ratio of the clustering
coefficient to characteristic path length.
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w = �w+ if w+ � wmax,

wmax otherwise.
� �3�

The between-group edge probability, b, is then calculated by
solving Eq. �1� for b:

b =
2CE�M� − Nw�N − C�

N2�C − 1�
. �4�

When w=w+ and b=0, it is necessary to choose a nonzero
value of b, so that the simulated networks will be connected.
For each such C and w, we chose a value of b so that ap-
proximately half of the networks generated would be con-
nected. These values were obtained by generating large num-
bers of networks while varying b over a logarithmically
spaced set of values. We then recalculated w according to Eq.
�1� in order to keep E�M� constant.

Characteristic path length, L, for a network is defined as
the arithmetic mean of all pairwise shortest paths between
each vertex and all other vertices in the network. We calcu-
late this quantity using Dijkstra’s algorithm �27� to obtain all
pairwise shortest path lengths lij, and define

L =
1

	N

2

�

i�j

lij . �5�

The average clustering coefficient, �, is the arithmetic
mean of the vertex-wise clustering coefficients, �i, where �i
is defined as the ratio of number of edges between vertices in
the neighborhood of vertex i to the number of possible edges
in the neighborhood of vertex i. The neighborhood of vertex
i is the set of all other vertices sharing an edge with vertex i.
Thus, �i represents the probability that a pair of vertices
sharing connections with a third vertex will themselves be
connected. The average clustering coefficient provides a
measure of local versus global connections in the graph.

The ratio � /L provides a useful relative measure of the
small-world property. In a set of networks, this ratio is maxi-
mized in those networks that have a relatively short charac-
teristic path length and a relatively high clustering coeffi-
cient. While the statistical properties of this ratio are
uninvestigated, it provides a useful heuristic measure to ob-
jectively evaluate small world properties within a defined set
of networks.

Another natural measurement of compartmentalization is
the increase in the probability of an interaction between in-
dividuals within the same compartment, relative to the prob-
ability of an interaction between individuals in different
compartments. This can be expressed as an odds ratio �OR�
of the form

OR =
Pr�A�B�Pr�AC�BC�
Pr�AC�B�Pr�A�BC�

, �6�

where A=“two vertices share an edge,” B=“two vertices are
in the same compartment,” and AC and BC represent the
complements of events A and B, respectively �22�. We esti-
mated OR for simulated networks with varying group size
and number. The initial group assignments used to generate

the networks were assumed to represent the compartments
within these networks.

Finally, we report values for a measure of compartmen-
talization, C1, from the food web literature �23�. If we define
�i as the neighborhood of vertex i, then

C1 =
1

	N

2

�

i�j

cij , �7�

where

cij =
�i � � j

�i � � j
. �8�

C1 shows a pattern similar to that of �, which is not surpris-
ing given the similarity of form.

III. RESULTS

Investigations in the vast space of possible topologies rely
upon “tunable” axes of variation to delimit sets of compa-
rable networks. Our investigation contributes to previous ef-
forts by considering a novel axis representing variation in the
number and size of groups.

Our results show that compartmentalization, clustering
and the small world property are maximized in a narrow
intermediate region between few, very large groups and
many, very small groups �Fig. 2�. Two measures of compart-
mentalization reach an abrupt maximum in networks of in-
termediate group sizes and numbers. While both clustering
coefficients and characteristic path lengths are maximized in
networks of high compartmentalization, differences in the
behavior of these properties along this axis result in a narrow
region of relatively high clustering and relatively short char-
acteristic path lengths. The overall pattern of these results is
consistent across a wide range of parameter values in b and
w �Fig. 2�b��. These results are related to Newman’s finding
that increasing clustering leads to a reduction in the size of
the largest connected component for graphs with compart-
mental structure and constant k �25�. These results suggest
that the size and number of groups in networks may influ-
ence both compartmentalization and the small world prop-
erty in model networks.

IV. DISCUSSION

The small world property arises in networks with interme-
diate group numbers and sizes because these networks bal-
ance the exposure of individuals to both global and local
interactions. This result suggests that some compartmental
network organizations may provide a general basis for the
observation of small world properties in many real-world
networks. However, not all compartmental network organi-
zations lead to small world properties. For example, some
“rewired ring” models begin as highly clustered components
which are then connected to each other by randomly remov-
ing within-compartment edges and establishing new connec-
tions between the disconnected vertices and randomly cho-
sen vertices in the graph with probability � �7�. Larger
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values of � correspond to an increased incidence of global
connections at the expense of local ones. Along an axis of
increasing �, compartmentalization decreases monotonically,
but the small world property arises at intermediate values of
�.

While many prior investigations have focused on the dy-
namical consequences of small world topologies, studies are
increasingly investigating the factors underlying these net-
work structures. For example, Newman and Park �1� present
analyses of several real-world social networks in which com-
partmental network structures influence both the clustering
property and degree correlations between adjacent vertices
�assortativity�. Our findings are consistent with these data in
emphasizing the importance of compartmental structures in
network properties, and may contribute to previous studies
by suggesting a range of groups organizations that are more
likely to lead to highly clustered networks, which facilitate
small world topologies. Exploring fundamental explanations
for the structure of group organizations in real-world net-
works may provide a mechanistic approach to explain some
observations of small worlds in diverse systems, although
these explanations are likely to be system-specific. However,
this investigation suggests that factors influencing the size
and number of groups in real-world networks may have im-
portant effects on small world properties.

This analysis also suggests some potential limitations for
investigations of real-world networks. While many network

properties may be influenced by group structure, the ob-
served group structure is highly dependant on the scale of the
network boundaries. The boundaries of real-world networks
are often indistinct, and the appropriate scale for investigat-
ing the compartmentalization in these networks is unclear.
For this reason, group organization may not be apparent at
the scale or resolution of many existing datasets. For ex-
ample, ecological food webs are complex systems that span
heterogeneous environments. While many food web studies
have focused on communities with relatively distinct habitat
boundaries, such as islands or lakes, several recent studies
have emphasized the importance of occasional interhabitat
subsidies that may link distant food webs �28�. Alternatively,
real-world data sets may describe networks with few large
groups, although these groups may be part of a larger com-
partmental system when viewed at a dynamically relevant
scale.
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